Exercise 64

(a) If $f(x)=4 x-\tan x,-\pi / 2<x<\pi / 2$, find f^{\prime} and $f^{\prime \prime}$.
(b) Check to see that your answers to part (a) are reasonable by comparing the graphs of f, f^{\prime}, and $f^{\prime \prime}$.

Solution

Part (a)
Calculate the first derivative of $f(x)$.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}(4 x-\tan x) \\
& =\frac{d}{d x}(4 x)-\frac{d}{d x}(\tan x) \\
& =(4)-\left(\sec ^{2} x\right) \\
& =4-\sec ^{2} x
\end{aligned}
$$

Calculate the second derivative of $f(x)$.

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{d}{d x}\left[f^{\prime}(x)\right] \\
& =\frac{d}{d x}\left(4-\sec ^{2} x\right) \\
& =\frac{d}{d x}(4)-\frac{d}{d x}\left(\sec ^{2} x\right) \\
& =0-\frac{d}{d x}(\sec x)^{2} \\
& =-2(\sec x)^{1} \cdot \frac{d}{d x}(\sec x) \\
& =-2 \sec x \cdot(\sec x \tan x) \\
& =-2 \sec { }^{2} x \tan x
\end{aligned}
$$

Part (b)

Below is a plot of the function and its first and second derivatives versus x.

Notice that $f^{\prime}(x)$ is zero whenever the tangent line to $f(x)$ is horizontal, $f^{\prime}(x)$ is positive whenever $f(x)$ is increasing, and $f^{\prime}(x)$ is negative whenever $f(x)$ is decreasing. Also, $f^{\prime \prime}(x)$ is positive whenever $f(x)$ is concave up, $f^{\prime \prime}(x)$ is negative whenever $f(x)$ is concave down, and $f^{\prime \prime}(x)=0$ whenever there's an inflection point in $f(x)$.

